第225章 数学王冠上的明珠,哥德巴赫猜想(2 / 7)
1966年,陈景闰证明了“1+2”成立,即‘任意充分大的偶数都可以表示成两个素数的和,或是一个素数和一个半素数的和’。
现在常见的猜想陈述为欧拉的版本,把命题‘任一充分大的偶数都可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b的数之和’记作‘a+b’。又被称为“强哥德巴赫猜想”或“关于偶数的哥德巴赫猜想”。
从关于偶数的哥德巴赫猜想,可以推出:任一大于7的奇数都可以写成三个质数之和的猜想。后者被称之为“若哥德巴赫猜想”或“关于奇数的哥德巴赫猜想”。
如果关于偶数的哥德巴赫猜想是对的,则关于奇数的哥德巴赫猜想也会是对的。
弱哥德巴赫猜想尚未完全解决,但是在1937年的时候,前苏耳关数学家维诺格罗多夫已经证明充分大的奇质数都能写成三个质数的和,也称为“哥德巴赫-维诺格拉朵夫定理”或“三素数定理”。
坐在酒店的凳子上,王东来的脑海里迅速地浮现出以上的信息。
不仅仅是哥德巴赫猜想,其他稍微有名,还未被破解证明的数学猜测,他都有看过。
“想要研究哥德巴赫猜想,有四个途径,分别是殆素数、例外集合、小变量的三素数定理以及几乎哥德巴赫问题。”
将哥德巴赫猜想的大致信息回忆了一遍之后,王东来便开始思索起来自己该用哪一种办法。
殆素数就是素因子个数不多的正整数。现假设N是偶数,虽然不能证明N是两个素数之和,但是足以证明它能写成两个殆素数的和,即N=A+B,其中A和B的素因子个数都不太多,比如说素因子个数不超过10。
用“a+b“来表示如下命题:每个大偶数N都可表为A+B,其中A和B的素因子个数分别不超过a和b。显然,哥德巴赫猜想就可以写成“1+1“。
在这一方向上的进展都是用所谓的筛法得到的,效果也极为显著。
从1920年开始,挪威的布朗证明了‘9+9’。
1924年,德国的拉特马赫证明了‘7+7’。
1932年,英国的埃斯特曼证明了“6 + 6“。
1937年,意大利的蕾西先后证明了“5 + 7“,“4 + 9“,“3 + 15“和“2 + 366“。
1938年,苏连的布赫夕太勃证明了“5 + 5“。
1940年,苏联的布赫夕太勃证明了“4 + 4“。