第736章 玄极(1 / 7)
第?日,全体实数在这一同时诞生,构成了一个体量为不可数无限的宇宙。
标准分析中用于定义实数的方法是戴德金分割,用两个有限的有理数之间的空隙去定义实数。
按照康威创造的规则,定义1\/3的两个数集分别是左集0.01,0.0101,…,右集取0.1,0.11,…。
其中0.01是分数1\/4,0.1则是分数1\/2。
左右两个数集中的每一个数都是二进制下的分数,就像是切割那根万世不竭的木棍一样,不断地将数轴分割成两半。
随着无止尽的切割,两个集合中的数越来越多,数轴剩余的长度则越来越短。
最终在无穷次步骤过后,左集和右集中都包含了无限个数,创造出了1\/3。
类似的,根号2和π等无理数也可以用这种方式定义。
这种处理方式与康托尔处理实数的方式如出一辙。
在研究实数集合时,为了保证每一个数都有唯一的写法,康托尔将1、0.5这类数字都表示成了0.999…、0.4999…等等与无理数一致的形式。
“好熟悉的感觉。”
阿基里斯低头看了看挂在自己胸前的粉白色螺旋钥匙。
康威创造实数宇宙的过程就像是一台芝诺机。
第一花费了1秒,创造了2个数字。
第二花费了1\/2秒,创造了4个数字。
第3花费了1\/4秒,创造了8个数字。
但普通的芝诺机只能处理一个无穷序粒
康威创造的实数宇宙是芝诺机的升级版,应该称它是二星芝诺机。
到这里为止,这种用两个数集定义一个数的规则并不会比普通的规则多出什么新的有趣之处,反而显得多此一举,极为麻烦。
“?日,实数诞生,宇宙现形。”